

Australian Government Department of Defence Science and Technology

Coherent simulation of sea-clutter for a scanning radar

Luke Rosenberg¹ and Simon Watts² 1 - Defence Science and Technology Group, Australia 2- University College London, UK

Airborne maritime surveillance

- Detection of small targets on the sea surface
 - Currently operate airborne platforms at low altitude.
 - Low grazing angles have reduced clutter backscatter.
 - Non-coherent processing.
 - Single aperture systems.
- Desire to operate with platforms at higher altitudes.
 - UAVs flying at > 10,000 ft.
- Future radars will likely be multi-aperture and use coherent processing.
- Most clutter simulation techniques only consider a single look direction.
- Need scanning simulation method to help with design and testing of new single and multiple aperture detection schemes.

Background

- Significant work over past years to improve sea-clutter modelling techniques.
- Time and spatially varying Doppler spectra model developed by Watts for low grazing angle clutter (2010).
- Found to be consistent with the Ingara medium grazing angle dataset and ۲ extended to a bi-modal model for better representing sea-spikes (2014).
- Adapted to work with the Pareto and K+Rayleigh distributions (2014). ۲
- Model was also extended to include multiple phase centres with a single look ٠ direction (2014).
- Parameter models developed to enable generic simulation of original and bi-۲ modal Doppler spectrum models (2015).
- Spectrum model is now used to model the sea-clutter observed from a multiphase centre scanning radar (2016).

Scanning radar scenario

- Scanning radar platform travelling with velocity, v_{p} .
- Radar look angle is θ_{plat} , angle relative to wind direction is ψ .
- Assume medium grazing angle scenario to utilise existing Doppler parameter models.

Evolving Doppler spectrum model

Spectrum model is a single Gaussian with normalised underlying mean (texture), τ :

$$G_0(f,\tau,s,\boldsymbol{\Omega}) = \frac{\tau}{\sqrt{2\pi}s(\boldsymbol{\Omega})} \exp\left[-\frac{(f-m_{\rm f}(\tau,\boldsymbol{\Omega}))^2}{2s(\boldsymbol{\Omega})^2}\right]$$

- Mean Doppler is related to the normalised texture: $m_{\rm f}(\tau, \Omega) = A(\Omega) + B(\Omega)\tau + f_{\rm plat}$
- Doppler shift due to moving platform: $f_{\text{plat}} = \frac{2v_p}{\lambda} \cos\theta_{\text{plat}}$
- The spectral width, s, is modelled as a Gaussian RV with mean, m_s and std. deviation, σ_s .
- Parameter models required for: A, B, m_s and σ_s .
- Modelled with parameters contained in the set $\boldsymbol{\Omega} = \{\theta_{\text{plat}}, \psi, \theta_{\text{swell}}, \eta, U, H_{1/3}\}$.
- Azimuth two-way beampattern, $A(\theta)$ related to A(f) by $f = \frac{2\nu_p}{\lambda} \sin\theta$, width is a function ٠ of look angle, $sin(\theta_{plat})$ – maximum when side looking.
- Can model spreading due to azimuth two-way beampattern through the convolution:

$$G(f,\tau,s,\boldsymbol{\Omega}) = A(f) * G_0(f,\tau,s,\boldsymbol{\Omega})$$

Simulation method

• Simulation method based on the convolution of the desired clutter impulse response g (order N) and the compound Gaussian model $x\sqrt{\tau}$:

$$y(m,\tau) = \frac{1}{\sqrt{2}} \sum_{n=-N/2}^{N/2} g(n,\tau,s,\Omega) x(m+n) \sqrt{\tau(m+n)}$$
(1)

- Texture, τ , modelled with a Gamma distribution with Gaussian (spatial) correlation produces K-distributed clutter model for $y(m, \tau)$.
- Speckle, *x*, modelled as complex normal RV.
- Discretised impulse response, g found by taking Fourier transform of spectral model where f_r is the PRF:

$$g(n,\tau,s,\boldsymbol{\Omega}) = A\left(\frac{n}{f_r}\right) \exp\left[-j\frac{m_f(\tau,\boldsymbol{\Omega})2\pi n}{f_r}\right] \exp\left[-(2\pi s(\boldsymbol{\Omega})nf_r)^2\right]$$

• Can be implemented as a sliding window by repeating (1) for each pulse.

Simulation steps

- Simulate the normalised texture over the entire scan. 1
 - Only generate realisations for a small number of positions \sim 10 (need approx. constant texture over filter integration time).
 - Distribution shape and spatial decorrelation length determined by user defined inputs in $\boldsymbol{\Omega}$ (sea-state, wind and swell direction, grazing angle).
 - Interpolate to the correct time scale (pulse repetition interval).
- 2. Generate realisations of the speckle RV, x and the spread RV, s (but no scaling or offset).
 - For each pulse, extract correct texture samples from the previous step.
 - Determine model parameters: A, B, m_s and σ_s .
 - Scale and offset the RV s.
 - Form the impulse response *q* and perform convolution.
 - Add thermal noise with the correct CNR (determined by radar range equation and IRSG-linear mean backscatter model).

Parameter modelling

- Parameter model provides a basis for modelling the statistical parameters in the simulation:
- Used for each polarisation channel independently and contains distinct models for geometry and sea-state.
- Geometry variation modelled with Fourier series:
 - $X(\eta, \psi) = a_0 \eta^{\gamma} [1 + a_1 \cos \psi + a_2 \cos(2\psi) + a_3 \cos(\psi \phi) + a_4 \cos(2(\psi \phi))]$
 - $-\eta$ is the grazing angle, ψ is the azimuth angle,
 - $-\phi$ is the wind swell direction,
 - $-\gamma$, a_0 ,..., a_4 are the model coefficients.
- Sea-state variation modelled with:
 - $Y = b_0 + b_1 \log_{10}(U) + b_2 H_{1/3}, \quad (2)$
 - U is the wind speed, $H_{1/3}$ is the significant wave height,
 - b_0 , b_1 , b_2 are the model coefficients.

Parameter modelling

• To relate these two models, coefficients are altered to be independent of grazing angle by introducing a normalisation factor, η_0 and then redefining previous equation:

$$X(\theta,\psi) = \left(\frac{\eta}{\eta_0}\right)^{\gamma} \left[\alpha_0 + \alpha_1 \cos\psi + \alpha_2 \cos(2\psi) + \alpha_3 \cos(\psi - \phi) + \alpha_4 \cos(2(\psi - \phi))\right]$$

where the new coefficients are related by

$$\alpha_0 = a_0 \eta_0^{\gamma}, \ \alpha_1 = a_0 a_1 \eta_0^{\gamma}, \ \dots, \ \alpha_4 = a_0 a_4 \eta_0^{\gamma}.$$

- The model is then implemented by equating each coefficient γ , $\alpha_0, \ldots, \alpha_4$ to the model Y in (2).
- Results in 18 coefficients per polarisation.
- Fixed the normalisation factor to 30°.

∷⊷

• Model is used for the shape, ν , spatial decorrelation length, Doppler spectrum parameters A, B, m_s and σ_s .

Example parameter model

Results show measured Pareto shape / model.

10

Some regions where shape is less than 1 – model is not valid.

÷

Modelling sea-spikes

To improve sea-spike modelling, use bi-modal spectrum model:

 $G_{\rm bi}(f,\tau,s,\boldsymbol{\Omega}) = (1-\beta)G_0(f,\tau,s_1,\boldsymbol{\Omega}) + \beta G_0(f,\tau,s_2,\boldsymbol{\Omega})$

- Gaussian mixture model with ratio β for each component.
- Discrete scatterers due to targets or sea-spikes will cause an extra Doppler spread due to scanning motion of radar:

$$s_{\rm scan} = \frac{\sqrt{2ln2}}{2\pi} \frac{\omega_{\rm scan}}{\phi_{\rm 3dB}}$$

where ϕ_{3dB} is the azimuth 3dB beamwidth, ω_{scan} is the scan rate.

Set Doppler spread, $s_1(\boldsymbol{\Omega}) = s(\boldsymbol{\Omega})$, second spread component:

$$s_2(\boldsymbol{\Omega}) = \sqrt{s^2(\boldsymbol{\Omega}) + s_{\mathrm{scan}}^2}$$

Multiple phase centres

- Require representation of K clutter sub-patches where *D* is the spacing between phase centres.
- See example for 2 apertures:
- Texture is broken up into K parts:

$$\sum_{k=1}^{K} \tau_k = \tau$$

where $\tau_k = A(f_k)\tau$ models the return from each part of the beam.

• Can now remove beampattern convolution – i.e just use G_0 or G_{bi} .

.

Multiple phase centres

- Need to adjust platform Doppler shift: $f_{\text{plat}} = \frac{2\nu_p}{\lambda} \cos(\theta_{\text{plat}} - \theta_k).$
- Overall return from l^{th} sub-aperture:

$$\tilde{y}_{l}(m) = \sum_{k=1}^{K} y(m, \tau_{k}) \exp\left(\frac{j2\pi}{\lambda} (R_{k,l} - R_{k,1})\right)$$
$$\approx \sum_{k=1}^{K} y(m, \tau_{k}) \exp\left(\frac{j2\pi}{\lambda} D(l-1) \sin\theta_{k}\right)$$

- Implementation more computationally intensive due to extra summation.
- Can reduce this by only including those sub-patches where $A(f_k) > \epsilon$, where $\epsilon \approx 10^{-3}$.

Simulation examples

- Consider the following example with the radar scanning clockwise with the radar platform heading North.
- Wind and swell are both coming from the West.
- Filter order N=64.

∷⊷

Radar scan rate	5 rpm
Aircraft speed	80 m/s
Azimuth 3 dB beamwidth (two-way)	3°
Centre frequency	10 GHz
Bandwidth	200 MHz
Pulse repetition frequency	3 KHz
Grazing angle	30°
Sea state	3
No. of pulses a target will be in the beam	300
Amplitude PDF model	K distribution
Spectral model	Bimodal

Single aperture results

- Range / time result shown on left for the forward looking (crosswind) and side looking (upwind) cases.
- Doppler spectrum shown on right (after Doppler centroid correction) with greater correlation in the forward looking case (narrower spectrum).

Multi-aperture results

- Multi-aperture model has $D = \frac{\lambda}{2}$ and L = 10 spatial channels.
- Forward looking spectrum appears narrower, but on average (over range) the width is correct.

Simulation verification

• Simulation is verified by comparing the estimated spatial correlation, shape and spectral width with the desired / specified values around the orbit.

...

÷

÷

....

....

- All estimated results show a close match with the desired ones.
- Left single aperture, right multi-aperture.

Multi-aperture power spectra

• Fourier / optimum power spectrum used to verify the multi-aperture simulation.

$$P_F = \boldsymbol{v}^H(\theta, f) \widehat{\boldsymbol{R}} \boldsymbol{v}(\theta, f)$$
$$P_{\text{opt}} = \frac{1}{\boldsymbol{v}^H(\theta, f) \widehat{\boldsymbol{R}}^{-1} \boldsymbol{v}(\theta, f)}$$

with steering vectors:

$$\boldsymbol{v}(\theta, f) = \boldsymbol{v}_{\text{spat}}(\theta) \otimes \boldsymbol{v}_{\text{temp}}(f) \in C^{LC \times 1}$$

containing elements:

...

18

$$v_{\text{spat,l}}(\theta) = \exp\left[j2\pi(l-1)\frac{d}{\lambda}\sin(\theta)\right]$$
$$v_{\text{temp},c}(f) = \exp\left[j2\pi(c-1)\frac{f}{f_r}\right]$$

Covariance estimated with sample covariance matrix: $\widehat{R} = \sum_{q=1}^{2LC} y_q y_q^H$.

÷

.

.....

GROUP

Conclusions and future work

- Sea clutter simulation method presented for both single and multi-aperture scanning radars.
- Simulation verified by comparing the estimated shape, spatial decorrelation length and spectral widths with the desired values.
- Multi-aperture simulation also verified by forming the Fourier and optimal spectra.
- Future work will investigate the extension of the parameter models to include:
 - variation of the CNR with range,

.....

- the impact of varying the coherent processing interval when characterising the model parameters,
- how to include other range resolutions (beyond 0.75 m).